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Abstract

This paper presents a robust textual entailment

system using the principle of just noticeable dif-

ference in psychology, which we call a local

graph matching-based system with active learn-

ing. First, although an early textual entailment

task often involved two rather simple sentences

of T (“Text”) and H (“Hypothesis”), the recent

textual entailment task often involves multiple /

complex / compound sentences in T (and H). In

this context, the search for corresponding sub-

graphs of T and H is one important task with re-

gard to the principle of just noticeable difference

where irrelevant items will work as noise for

the similarity-based graph-matching approach.

Our approach concerns to reduce such noise by

linguistic preprocessing being conscious of the

topic mentioned by H via subject alignment.

Second, by definition of textual entailment task,

one interesting task involves the understanding

of T which will not be detected by the similarity-

based method. Third, one bottleneck of textual

entailment task is the performance drop by un-

known words and named-entities. We explore re-

ducing the unknown words and named-entities,

incorporating meaning in parentheses / rhetori-

cal expressions / semantic roles, and additional

feature of language model from deep learning.

Our result for RTE2 corpus was 80.49 for macro

F1 score, 84.95 for precision for the positive en-

tailment, and 79.95 for recall for negative entail-

ment.

Keywords: Textual Entailment, Semantics.

1 Introduction

A textual entailment task addresses the variabil-

ity of semantic expression whether the same

meaning can be expressed by or inferred from

different texts [1]. A graph matching approach

[2] is one classical approach towards textual en-

tailment. Sentences are represented as normal-

ized syntactic dependency graphs and entailment

is approximated with an alignment between the

graph representing the hypothesis and a portion

of the corresponding graph(s) representing the

text. Although this approach is attractive, we re-

quire at least two extensions.

First, the basic limitation of this approach is

that the graph matching is done using global fea-

tures where other material in T (or H) may af-

fect the results of the match. This includes a

small example: dropping of a restrictive modifier

does not preserve entailment in a negative con-

text since the search is based on global features.

All the more, there is one important change in

its setting: although early textual entailment task

often involved two simple sentences of T and

H , the recent textual entailment task often in-

volves multiple / complex /compound sentences

in T (and H). In this context, the search for cor-

responding subgraphs of T and H becomes one

important task where irrelevant items will work

as noise for the similarity-based graph-matching

approach. MacCartney et al. [3] employ typed

dependency graphs, partial alignment between

the typed dependency graphs representing the

hypothesis and the text, and a decision of entail-

ment. They mentioned the confounding between

the alignment and decision processes. Mirkin et

al. [4] deploy a slightly different approach where

they use a partial graph which they call a subsen-

tential textual entailment. This paper refers the

principle of just noticeable difference in psychol-

ogy / color perception [5] for guiding the search.

This principle says the danger of comparing two

quantities which have a big difference. Hence,

we tried to decide whether this T entails H or

not within a single aspect with very small differ-

ence by reducing the noise by linguistic prepro-

cessing being conscious of the topic mentioned

by H via subject alignment. Among various

ways to confirm this principle, the way we per-

form in this paper is to avoid the comparison of

two sentences when the distance involves mix-

ture of lexical distance with different grammati-



cal functions, grammatical distance with differ-

ent subject, distance between unknown words,

and distance which requires the understanding

of the text which is beyond the capability of the

similarity-based comparison. We tried to first

preprocess them into a graph which can be man-

ageable within the framework of lexical distance.

One important preprocessing among them is the

subject alignment. Our method is slightly differ-

ent from the alignment approaches by MacCart-

ney et al. [3] or Bentivogli et al. [6] which align

all the possible elements in T and H . Bentivogli

et al. [6] further handles the coreferences in the

context of discourse. These approaches have a

problem of confounding of alignment and deci-

sion processes, as is mentioned by MacCartney

et al. [3]. Our approach detects the correspond-

ing subjects which sometimes requires to detect

voices or semantic roles, which will facilitate the

decision phase in the same reason. Furthermore,

our system can also handle the resolution of time

/ space references are in itself necessary to deter-

mine whether T entails H .

Second, by definition of the textual entail-

ment task, we believe that one interesting task

for modern textual entailment task would involve

the understanding of T . A simple example of

this is that the number of person is not explic-

itly mentioned but simply the names of person

in T , while the number of person is explicitly

mentioned in H . This task is potentially diffi-

cult if we use the similarity-based matching. If a

testset includes such sentences which require the

understanding of T , the ability to understand text

will improve the overall score. This paper shows

only a simple solution in a very limited manner

which can only solve the simple case. This is not

because our approach can extend without loss

of generality but the approach which will solve

such problem in a general manner is really hard

for us to provide in this paper.

Finally, we note that this paper uses active

learning. Active learning often discovers new

training points other than the provided training

points. We actively discover new sub-points

adding on the substructures of T and H in or-

der to find closer substructures T ′ and H ′. We

actively discover indispensable additional train-

ing sub-points by linguistic preprocessing: we

supply the unknown words and unknown named-

entities, give meaning in parenthesis / rhetorical

expressions / semantic roles, and prepare addi-

tional information in order that we can perform

(simple) text understanding.

The remainder of this paper is organized as

follows. Section 2 describes the review of graph

matching model. In Section 3, we describe the

principle of just noticeable difference and we

present our model in Section 4. Our experimen-

tal results are presented in Section 5. We con-

clude in Section 6.

2 Review of Graph Matching Model

As is similar with Haghighi et al. [2], we rep-

resent text of T and H as a graph in the fol-

lowing way. First, T and H are represented as

a dependency tree using the modified version of

Collins’ head propagation rules, i.e. main verbs

are placed at the head of sentences. Second,

the dependency nodes such as collocation and

named-entities are collapsed. Note that collo-

cation include verbs and their adjacent particles.

Third, certain dependencies such as modifying

prepositions are folded. Fourth, the graph rep-

resentation is augmented by Propbank-style se-

mantic roles. Each predicate adds an arc labeled

with the appropriate semantic role to the head of

the argument phrase. Modifying phrases are la-

beled with their semantic types.

The summary of the graph matching model in-

troduced by Haghighi et al. [2] is as follows.

Let H denote hypothesis graph, T denote a text

graph, M denote a mapping from the vertices of

H to those of T , M(v) denote the match in T

for vertex v in H , and Cost(M) be the cost of

matching M . When M is a set of matching, the

cost of matching H to T is defined as in (1):

MatchCost(H,T) = min
M∈M

Cost(M) (1)

where Cost(M) is given by a convex mixture of

the node and relational match costs as in (2):

Cost(M) = αCostN (M) + (1− α)CostR(M)
(2)

where CostN (M) denotes a node cost, and

CostR(M) denotes relational match cost. Let

SubN (v,M(v)) be a model for substituting node

v for M(v). Then, the node cost is represented

as in (3):

CostN (M) =
1

Z

∑

v∈Hv

w(v)SubN (v,M(v)) (3)



where w(v) denotes the weight for node v, and

Z (=
∑

v∈Hv
w(v)) denotes a normalization con-

stant. Similarly, let SubP (e,φM (e)) be a model

for assessing the cost of substituting a direct re-

lation e for φM (e) under the matching. Relation

cost is represented as in (4):

CostR(M) =
1

Z

∑

v∈Hv

w(e)SubP (e, φM (e)) (4)

where w(e) denotes a edge cost, and Z

(=
∑

v∈Hv
w(e)) denotes a normalization con-

stant. In sum, this model yields T entails H

when MatchCost(H,T ) is low, and otherwise T

does not entail H .

3 Danger to Compare Big Difference
(Just Noticeable Difference)

This paper considers the meaning of differ-

ence in T and H which are described in nat-

ural language. The semantic distance be-

tween two words has various established theories

such as distributionally-based semantic similar-

ity [7], taxonomy-based semantic similarity [8]

and information-based similarity [9]. However,

the semantic distance between two sentences has

still difficulty in various places until establishing

a synthetic framework. This is since their differ-

ence will involve various combinations of lexical

difference, grammatical difference, and their dif-

ference of information content, while the overall

semantic difference of two sentences should be

measured by a single measure.

For instance, we suppose that we compare H

and T below. there would be several possibili-

ties where the parenthesis () denotes the compar-

ison and the first element comes from H and the

second element from T : (1) we compare (Bob,

Mary), (bought, sold), (a red car, a car), (Mary,

Bob), and (2) we compare (Bob, Bob), (bought,

sold), (a red car, a car), (Mary, Mary). (1) mixes

various things and (2) has some difficulties how

to quantify (bought, sold).

H: Bob bought a red car from Mary.

T: Mary sold a car to Bob.

T’: Bob bought a car from Mary.

Our method derives intermediate representation

T ′ by preprocessing and compare H and T ′. The

validity of this approach comes from an analogy

of the method in color perception [5] or other

psychology, in which we avoid to compare a big

difference.

The color perception may compare the two

big distances if two colors are distant. First,

the just noticeable difference is the smallest de-

tectable difference of a particular sensory stim-

ulus, which is due to Ernst Heinrich Weber who

studied the human response to a physical stim-

ulus in a quantitative fashion in 19th century.

Second, the trichromatic color theory in color

perception was the results of Thomas Young in

18th century, which showed that normal vision

needed three wavelengths to create the range of

colors. (Now we know that we have three types

of color-sensing cone cells. In this case, the just

noticeable difference corresponds to each basis

of wavelengths in red, green, and blue, respec-

tively.) Under such circumstances, if we quan-

tify the combined effects of sensory stimulus

whose effects are linear, we can separate each

effects. However, the combined effects of color

perception are known to be nonlinear. If the

combined effects are nonlinear, it is often very

difficult and dangerous to quantify the distance

between two colors if they are distant. Usually,

it is better to avoid the comparison of two quan-

tities whose difference is big. Nevertheless, it is

safe to compare two quantities if they are within

a small difference.

Now we go back to our situation of compar-

ison of two sentences. The graph-based match-

ing approach compares two sentences with a sin-

gle measure. This becomes problematic since

the comparison involves combined effects such

as lexical difference, grammatical difference and

the difference of information contents. Hence,

our approach limits ourselves within a small dif-

ference: to search subgraphs T ′ and H ′ which

have preferably a single (and small) difference.

It is noted that this approach may be explained

in terms of matrix factorization. Equation (2)

says that Cost(M) is the convex combination of

CostN (M) and CostR(M). The linguistic pre-

processing, described in Section 4, intends to re-

duce the dimensionality (or the rank) of matri-

ces CostN (M) and CostR(M) if we see these

as matrices where we especially intend to re-

duce the relation cost CostR(M). The more the

dimensionality (or the rank) of CostN (M) and

CostR(M) reduced, the more we can avoid to

compare a big difference.



4 Our Model

Now based on the graph matching algorithm, we

convert this into mathematical expressions by in-

troducing the locality. Let Tj be subgraph of T

and Hi be subgraph of H . For example, when

T consists of multiples of sentences, Tj may be

a simple sentence. Let Hi ≈ Tj denote that Hi

is close enough to Tj . We suppose that the com-

parison of the irrelevant elements of Hi and Tj

will be zero. For instance, T: John and Mary is 5

years old. H: John is 5 years old. The informa-

tion about Mary is irrelevant for the sake of H .

Hence, we convert T into T2: Mary is 5 years

old, Costl(T2, H,M(2,1)) = 0. 1

In order to avoid the assessment of the cost

globally, we decompose Cost(H,T,M(i,j)) with

a set of Costl(Hi, Tj ,M(i,j)) where a decom-

posed subgraph includes a close pair of Hi and

Tj which satisfies Hi ≈ Tj . Hence, the modified

version of the MatchCost(H,T) can be written as

in below:

MatchCost(H,T) = min
M∈M

Cost(H,T,M(i,j))

Cost(H,T,M(i,j)) =
∑

Hi≈Tj

Costl(Hi, Tj ,M(i,j))

Note that this Hi ≈ Tj corresponds to the prin-

ciple of the just noticeable difference in psychol-

ogy. Although this indicates that for given T and

H it may not be possible to find out such (a set

of) Hi and a set of Tj . Other note is that if Hi

only refers a subset of T , it may not need to con-

sider other part of T . This means that we may

not need to iterate all subsets of T to compare

Hi. This also means that we treat this as if a set

of Hi and Ti is almost mutual exclusive and only

a couple of pairs of Hi and Ti is active in prac-

tice.

4.1 Deep / Shallow Linguistic Preprocessing

Step

4.1.1 Subject Alignment on Dependency

Structure

The deep / shallow linguistic preprocessing

step modifies the original structures of H and

T in order to provide Hi and Tj which are sub-

sets of H and T with corresponding features in

1This irrelevant information is necessary in order to

prune out from the cost calculation. This information

should not aim at converting all the calculation between

H and T into the irrelevant information, which is easily

achievable.

the classification step. Using the equation (5)

and (6), our algorithm makes the size of the

source and the target sentences shrinked in or-

der that we can compare the Hi and Tj where

Hi and Tj are close enough and where other lo-

cal cost Costl(Hi,Tj ,M(i,j)) can be considered

to be infinity (although this is not always the

case; all the more, only the pair of Hi and Tj

will make matching while other pair will not).

In this process, the structure of texts are actively

investigated in two directions: (1) make T from

complex / compound sentences into simple sen-

tences and (2) make the form of T simplified

with considering the easier match with H . At

the same time, the feature extraction are actively

proceeded in order to help the simplification of

T . We call this mechanism as active learning

since the features used in the standard SVM are

not modified but are globally evaluated. Note

that although it is often the case that active learn-

ing let increase the training data, the active learn-

ing here let decrease the substructure of training

data and let extract the features according to this

dynamical substructure.

The conversion of subject relations (or subject

alignment) of Ti towards Hi is the second topic

in this process. It aims at aligning the subject

in H to the phrase Ts which is a subgraph of T .

If Ts is not the subject in the original T , T is

transformed with Ts as the subject. For example,

suppose that we are given the following T and

H:

• T:×9Ù¢a[V�O£xz1434åt¤H

e¯Ç±wJ¶�z½óîU^lh+Ì-

pK�{[Cheugugi (Jigekiro) was a water

gauge made by the scientist in the medieval

Rissi Joseon, Jang Yeong-sil.]

• H:½óîx¤He¯Ç±wJ¶�pK�{

[Jang Yeong-sil is a scientist in the medieval

Rissi Joseon.]

In this case, the subject alignment connects ‘½

óî’(Jang Yeong-sil) in H with ‘½óî’(Jang

Yeong-sil) in T . Then, the transformation yields

the graph containing several subtrees. If we ex-

tract such subtrees, this becomes the following

four subtrees in T .

• T1: <person> ½óî (Jang Yeong-

sil)</person> x z<job> J ¶ �

(scientist)</job>pK�{



• T2: <person> ½óî (Jang Yeong-

sil)</person>xz<country>¤He¯Ç

± (the medieval Rissi Joseon)</country>

w<job>J¶�</job>pK�{

• T3: <person> ½óî (Jang Yeong-

sil)</person> x z<time>1434 å

</time> t <object> +Ì- (water

gauge)</object>�^lh{

• T4: coordination [<phrase> ×9Ù

(Cheugugi)</phrase>, <phrase> a[V

�O</phrase>]

• H: <person topic=’Y’> ½óî (Jang

Yeong-sil)</person> x <country>

¤He¯Ç± (the medieval Rissi

Joseon)</country> w <job> J¶�

(scientist)</job>pK�{

Hence, the graph matching algorithm eventually

calculates the cost mostly between H and T2. In

this way, we modify the position of subject in a

sentence according with H .

Coordination We obtained the relation of co-

ordination from the dependency hypergraph.

Coreference Resolution / Identification of

Non-anaphoric NPs In coreference resolu-

tion, the non-anaphoric definite NPs [10] are of-

ten given, but in our context they should be iden-

tified in its preparation. This should be also true

for relative pronouns, reflexive pronouns, per-

sonal pronouns as well. Note that since there is

no article in Japanese we have no distinction be-

tween whether definite NPs and nondefinite NPs.

We identify the nonanaphoric NPs.

Coreference Resolution of Space / Time Ref-

erences We employ the space and time coref-

erence resolution to identify the fluctuation of

space and time expressions.

4.1.2 Unknown Words and Named Entities

Unknown Words (OOV Words) and Named

Entities (Multi-Word Expressions) Un-

known words or out-of-vocabulary words (OOV

words) have negative overall effects in textual

entailment task. We avoid this by searching

them on the Internet resources. Similarly, the

unknown named entities, such as person name,

company names, and titles, may considerably

decrease the overall performance. We use the

Internet resources as well to find a possibly cor-

rect named entities (Multi-Word Expressions).

Note that name can be written in various ways.

For example, Leonald Da Vinci is equivalent

with “Da Vinci”, “Mr. Leonald Da Vince”,

“Leonald”, and so forth.

4.1.3 Semantic Redundancies

Parenthesis and Quotation It is often that

some phrases are emphasized or rephrased using

parenthesis, quotation, and other symbols such

as “°±”, “¢£”, “®¯”, “”’, and ” “ “. These

expressions are considered semantically redun-

dant, which is meaningful in understanding the

text. For example, “The 8th °This Mystery is

amazing!±prize” can be considered as one en-

tity rather than only considering “This Mystery

is amazing!”.

Noisy Characters The text between parenthe-

ses and quotes may include noisy characters,

which are somewhat superfluous in order to un-

derstanding the text. For example, “The 8th

’This Mystery is amazing!’ prize” includes “!”

and “”“, which are considered to be superfluous.

4.1.4 Text Understanding

A graph-matching-based textual entailment

[2; 3] has limitation in that they will not detect

whether T requires to understand the content of

H . Suppose that T=’Bob bought a red car from

Mary and Tom.’ and H=’Three persons are re-

lated to the conversation’. In T , there is no num-

ber appeared, but human beings can read this

sentence and understand that there are three per-

sons in T . Our system considered the text under-

standing in terms of time / location / calculation.

Hypernym and Antonym This example is an

usual situation for many literature. In a word

level, if there is some difference in terms of the

level of abstraction in two words, i.e. ¤ôå

and¤ô\, it is required to judge whether¤ô

å is a hypernym of ¤ô\ or these two does

not have such relationships. Such relationships

in word can be judge using lexical resources such

as (Japanese) WordNet [11].

Quantifier Detection In English sentence, a

quantifier, such as ’all’ and ’every’, needs to be

examined in order to grasp the correct meaning.

These are detected by the predefined vocabular-

ies.



Rhetoric Detection If the sentence includes

rhetoric, such as metaphor, prosopopoeia, and

the idiomatic expression such as the four-word

Kanji (i.e. “9��ý” and “Æ§z�”), this

may prevent the similarity-based matching ap-

proach. It is often that the title becomes rhetoric,

such as in the case of “°Hey Hey SSVt�

SK�±”, in the sense that even if the meaning

in the title matches with the surrounding mean-

ing, it does not mean that T entails H . The text

within “°±” should be considered to be a dif-

ferent layer of meaning.

4.2 Determination Step

The determination step judges the similarity of

the Ti and Hi by the SVM classification [12]

where Ti and Hi are the possible correspondent

fragments. As is mentioned above, the feature

extraction for the SVM classification algorithm

are applied for the selected Hi and Tj . We

used L1-loss function with Radial Basis Func-

tion (RBF) kernel where C and γ were deter-

mined by cross-validation. Major features which

we used in our system are described below.

Lexical Entailment / Hyponymy Relations /

Antonymy Relations / Location Relations /

Adjective Gradation Features These features

are the same as [13] and [3]. Note that depend-

ing on the deep / shallow linguistic preprocess-

ing, hyponymy relations and antonymy relations

are exchanged.

Modality / Polarity / Factivity Features

These features capture the contexts which re-

verse or block monotonicity [3] where these are

often marked by the presence or absence of lin-

guistic markers. Modality feature capture modal

reasoning where possibility will not entail actu-

ality. Factivity feature

Adjunct Feature This feature suggests the

dropping or adding of syntactic adjuncts moving

from T to H [3].

Quantifier Features These features captures

entailment relations among sentences involving

quantification [3].

Semantic Role Matching Feature This fea-

ture indicates whether the corresponding seman-

tic role relations are equivalent or not. As with

this feature, some pair of features are prepro-

cessed to give true or false beforehand.

Parenthesis and Quotation Features These

features indicate the presence or absence of pos-

sible equivalent expressions. This enables the

similarity matching with the expression among

parenthesis and quotation.

Noisy Character / Rhetoric Feature These

features suggest to drop the corresponding frag-

ments from the similarity matching.

Time / Date / Number Features The pres-

ence of these features can be preprocessed by

coreference resolution of space / time references

(or some localization software) which will de-

tect different form of equivalent expressions.

These features are often preprocessed before-

hand whether they are true of false.

Text Understanding Features Classification

can only capture the similar expressions between

Ti and Hj . As is mentioned in Chapter 3, when

Hj requests some capability of text understand-

ing of Ti, this feature would suggest some basic

inference results in the deep / shallow linguistic

preprocessing. This enables a judge whether Ti

can be entailed Hj . Note that the capability of

these features are limited in time, location, and

number and in very basic case.

Content Length Feature If H contains more

information than T , this can be immediately de-

cided that T does not entail to H .

Deep Learning LM / Genre ID Feature

Context- dependent language model feature is

derived by context-dependent recurrent neural

network language model [14]. Genre ID feature

is derived by Latent Dirichlet Allocation (LDA)

[15].

5 Experimental Settings and Results

RTE2 RTE

Yes No total Yes No total

JA dev 240 371 611 250 250 500

JA test 256 354 610 250 250 500

LGM-Y 175 31 206 191 63 254

LGM-N 81 323 404 59 187 246

Table 1. RTE2 set (left) and RTE set (right).

In the experiments, we used various deep /

shallow linguistic preprocessing tools as well as



resources, which are shown below: Morphologi-

cal analyzer: JUMAN [16], Dependency parser:

KNP [17], Named-entity recognizer, NLTK [18],

MALLET [15], Paraphrase generator [19]; boot-

strap method (“X deploy Y”), Wordnet [11],

Wiki, monolingual corpora, and parallel cor-

pora, Internet search engine: Google; Yahoo,

Deep learning component: context-dependent

recurrent neural network language model [14],

ngram-HMM language model [20].

The statistics of development and test set for

textual entailment BC task is shown in Table 1.

The result by our approach is shown in Table 2

for RTE2 set (NTCIR-10) and Table 3 for RTE

set (NTCIR-9). For RTE2 set, the Macro F1

score was 80.49. The precision for yes entail-

ment was high, while the recall for no entail-

ment was high. As is indicated by the row of

our submission, our textual entailment system

gave output of ’yes’ with much smaller number

than the correct answer, while it gave output of

’no’ in larger number. The improvement from

graph matching (GM1) and local graph matching

(LGM) was 25% for RTE2 set. This tendency is

kept for RTE as well. The improvement from

graph matching (GM1) and local graph match-

ing (LGM) was 20% for RTE set.

LGM Best GM 1 GM 2

Accuracy 81.64 55.16 65.16

Y-F1 75.76 50.18 58.46

Y-Prec 84.95 46.36 57.58

Y-Rec 68.36 54.69 59.38

N-F1 85.22 59.24 70.00

N-Prec 79.95 55.49 69.23

N-Rec 91.24 63.52 70.79

Table 2. RTE2 Testset: Table compares our

method (LGM) and the original graph matching

method. GM 1 is an original, while GM 2 does

unknown words / parenthesis / space-time reso-

lution.

6 Conclusion

This paper presented a local graph matching-

based system with active learning. Our result

for RTE2 corpus was 80.49 for macro F1 score,

84.95 for precision for the positive entailment,

and 79.95 for recall for negative entailment. The

reason for high precision for the positive entail-

ment may be due to the fact that we tried to de-

LGM Best GM 1 GM 2

Accuracy 75.60 52.00 62.80

Y-F1 75.20 50.41 61.41

Y-Prec 74.49 48.80 59.20

Y-Rec 76.69 52.13 63.79

N-F1 75.88 53.49 64.09

N-Prec 73.86 51.88 61.94

N-Rec 78.00 55.20 66.40

Table 3. The results for RTE1 testset. LGM

shows our method. GM 1 is an original, while

GM 2 does unknown words / parenthesis / space-

time resolution.

termine the entailment only when the distance

between T ′ and H becomes small depending on

deep / shallow linguistic preprocessing and de-

termination.

There are several avenues for further works.

First, we briefly mentioned that the preprocess-

ing is equivalent to reduce the dimensionality of

matrices of CostN (M) and CostR(M). The rela-

tion extraction of [21] is attractive in this direc-

tion but requires to expand considerably. Sec-

ond, we would like to extend this framework for

crosslingual textual entailment and SMT [22].

Third, since T and H are traditionally include

a lot of unnecessary elements we call them noisy

elements. However, in SMT, T and H will be

close. More subtle investigation of noisy ele-

ment would be necessary [23; 24; 25].
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