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Acquisition of Unlabeled Dataset for
Human Activity Recognition
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Abstract: In the paper, we recorded the device’s IMU sensors in the setting of Human Activity Recogni-
tion task for the purpose of building the pretrained model by self-supervised learner. To use the data for
self-supervised learning, we collected it without labels. Therefore, unlike typical human activity recognition
datasets, no labels were assigned, and it is important to note this distinction. As a result, the cost of label
collection was minimized, but the time required for data collection remained the same, even though the
data was unlabeled. On the other hand, since the data was unlabeled, there was no need to go through
the complex process of assigning labels or inputting labels through a smartphone, which meant that data
collection could be carried out without any prior knowledge of human activity recognition. The dataset
consists of data from three subjects, totaling 228 hours. We performed self-supervised learning on the model
and evaluated its performance using other IMU datasets. While this data was originally collected for human
activity recognition, we anticipate that the use of unlabeled data in self-supervised learning will become more
common in the future. In such cases, this dataset should be suitable for tasks that use unlabeled IMU data.

1. Introduction

The dataset described in this paper was collected for

sensor-based human activity recognition, but there is a sig-

nificant distinction compared to previous approaches. His-

torically, human activity recognition has typically involved

constructing machine learning models through supervised

learning, which requires labeled sensor data (e.g., [1], [2],

[5]). Consequently, in sensor-based human activity recogni-

tion, data was collected while manually assigning labels to

the activities. As a result, segments where a specific activ-

ity was performed were labeled accordingly. Initially, labels

were recorded manually during data collection, but in recent

years, it has become common to input these labels through

smartphone applications.

In contrast, the rise of large language models (LLMs) [4],

[11] in recent years has brought attention to self-supervised

learning (SSL) models [3] based on transformer architec-

tures. These pre-trained models are trained on unlabeled

data, which allows us to introduce a self-supervised learning

method for human activity recognition, called SENvT [6].

In this self-supervised learning approach, training is per-

formed using unlabeled data, followed by downstream tasks

where labeled datasets are used for the specific task learn-

ing. Therefore, in self-supervised learning, training data can

come from a domain different from the target dataset, mean-
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ing out-of-distribution (OOD) data can be used for train-

ing. This type of learning was traditionally referred to as

transfer learning but is now more commonly called out-of-

distribution data learning.

On the other hand, collecting data without labels liter-

ally means that no detailed information about the activities

performed is recorded. As such, in the latter part of this pa-

per, we describe our attempt to estimate labels for this data

using the self-supervised learning model described above.

The structure of this paper is as follows. Section 2 out-

lines the data collection method, while Section 3 discusses

the statistical properties of the data. These two sections pri-

marily focus on data collection. Sections 4, 5, and 6 detail

our efforts to apply the self-supervised learning model to in-

fer labels for the activities in this dataset. Finally, Section

7 presents the conclusion.

2. Application for Sensor Data Acquisi-

tion

We used Physics Toolbox Sensor Suite [10] for data acqui-

sition. This is a smartphone application for recording sensor

data directly from the device. Also, the recorded data can

be stored as csv files to a cloud such as Google Drive. The

application uses all supported sensors, which are a G-force

sensor, linear accelerometer, gyroscope, barometer, magne-

tometer, and GPS. We sampled the data at a frequency of

100 Hz, although the sampling frequency depends on the

smartphone.

The participants who recorded the data put their smart-

phone in their breast pocket or hip pocket and recorded the
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sensor data. Participant 1 carried their device in their hip

pocket or in their hand most of the time while Participant

2 usually carried their device in their breast pocket.

The protocol for data acquisition consists of these 5 steps:

(1) the participant launches this application on their smart-

phone. (2) Enable all types of sensors. (3) Push the Start

Recording button. (4) Push the End Recording button. (5)

The participant stores the acquired data to the specific place

with the specific file name. The acquired data are already

csv files. Therefore, they can be used as a dataset where

their file names are the date of the acquisition.

3. Size of Collected Data

The statistics of our dataset are as follows. We collected

the data for about a year. It contains data from three peo-

ple. Table 1 shows the length of the collected data per month

and the number of people who collected the data. The total

length is about 228 hours.

Table 1: The length of the collected data per month.
Year/Month Total length (Hours) Participants

2023/10 11.5 2
2023/11 86.7 2
2023/12 16.2 2
2024/1 55.7 1
2024/2 8.71 1
2024/3 8.05 1
2024/4 2.95 1
2024/5 9.63 1
2024/6 16.1 1
2024/7 5.04 1
2025/1 7.04 1

3.1 Range of activities

Five primary behavioral patterns were targeted to be

recorded during data acquisition. These patterns include

a range of daily activities.

Fig. 1 shows the rough statics of activities. Rough means

that we did not record activities. Therefore, this is based on

the very rough numbers that the subjects remember. For

example, when the subject take the route 3 (Refer the next

section about the route), this routes consists of walking and

standing (=stationary behavior). However, usually we do

not remember how many times we stop in the middle, we

roughly calculate that we walk 3 times and stop 2 times.

Standing (=Stationary behavior) accounts for approxi-

mately 10% of the dataset, providing a baseline for com-

parison with more dynamic activities. Running represents

about 5%, reflecting high-intensity movement data. Cycling

contributes roughtly 10%, offering insights into moderate-

intensity activities, while traveling by car or bus comprises

approximately 5%, capturing data on vehicular motion and

its unique characteristics.

3.2 Situations for data acquisition

There were 7 situations in which Participant 1’s data were

collected. They collected the data in and around the Iizuka

campus of Kyushu Institute of Technology.

Fig. 1: Recorded Activities (Rough Statistics)

The main locations where we acquired data and the main

behavioral patterns at these locations are as follows:

• From student dormitories to university

(around 30% of the all dataset):

Fig. 2: Route 1

This route is the main one in my dataset. The behav-

ior pattern consists of walking as the main part, roughly

75% of the entire process. Cycling is second about 15%.

Finally, running about 5%, and standing about 5%.

• Within university (arond 20% of the all

dataset):
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Fig. 3: Route 2

This route has the second highest amount of data ac-

quired. In this route, the main behavioral pattern is

walking about 80%, followed by standing about 20%.

• From student dormitories to supermarkets

(around 10% of the all dataset):

Fig. 4: Route 3

The next is from the student dormitory to the super-

market. In this route, the composition of behavior pat-

terns is walking about 55%, cycling about 40%, and

standing about 5%.

• From school to supermarkets (around 10% of

the all dataset):

Fig. 5: Route 4

This route consists of walking about 75% and cycling

about 25%.

• From student dormitories to gym (around 15%

of the all dataset)

Fig. 6: Route 5

This route consists of walking approximately 60%, cy-

cling, approximately 30%, running about 10%.

• From school to gym (around 10% of the all

dataset)

Fig. 7: Route 6
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The main activities consists of walking around 80%, cy-

cling about 15%, and running about 5%.

• From student dormitories to station (around

5% of the all dataset):

Fig. 8: Route 7

This route is used the least frequently. The proportion

of taking cars or buses is the highest, which is about

90%, and cycling which is about 10%.

4. Inference of Activities

4.1 Preprocessing

The data acquired from the smartphones was recorded

at an approximate 100 Hz period. From this raw data, we

created 30Hz sliding windows which were 10 seconds each,

as in [6]. Data acquired from the smartphones had the

problem that the acquisition cycle was not constant. Most

of the time, inertial data was recorded every 10 ms, but for

some reason the recording was sometimes delayed. Since the

model used in this study expects data to be sampled com-

pletely periodically, our dataset could not be used as was.

Therefore, we pre-processed the data to make it available for

training the model. We used Pandas 2.2.2 for pre-processing.

The raw data included not only data from the accelerome-

ter, but also data from magnetometers and other sources,

but we used only the accelerometer data in this study.

First, the acquired data were resampled at 30 Hz. As

mentioned above, our raw sensor data were not perfectly

periodic and were delayed in some places. So, we filled with

NaN the sections that were not recorded. This gave us the

data sampled at 30 Hz evenly, although there were missing

values.

Next, the data was separated by sliding windows. The size

of the sliding windows was set to 300. This means that each

sliding window contains 10 seconds of data. In addition, for

the stride of the sliding windows, we created versions of 10,

5, and 2.5 seconds, respectively. This was done to increase

the amount of dataset used in this study by reducing the

stride, since the dataset used in this study was relatively

small. In later experiments, we examined how this increase

in stride affected the performance of the model.

Now that we obtained the sliding windows with missing

values from the raw sensor data, we sorted each sliding win-

dow. In order to complete the missing values in each sliding

window, the window must contain enough non-missing val-

ues. For example, if a sliding window contains only one or

fewer entry, completion is not possible. Windows that can-

not be completed were excluded at this point.

Finally, the NaNs contained in each sliding window were

linearly interpolated. This gave us an evenly sampled iner-

tial dataset with no missing values. Table 2 is the size of

each dataset created by the above algorithm. Figure 9 is an

example of a sliding window obtained by the above process.

Each sliding window contains data in the X, Y, and Z axes

at 30 Hz for 10 seconds.

Table 2: The numbers of the datasets of different strides.

The bigger the stride is, the smaller the resulting dataset is.
Stride Windows

2.5 seconds 98658
5 seconds 49411
10 seconds 24993

Fig. 9: An example of a preprocessed sliding window. Each

sliding window contains 10 seconds of X, Y, and Z axis data

at 30Hz. Its shape is 3× 300.

5. Evaluation

To investigate the usefulness of the dataset created as

described above, we performed human activity recognition

tasks on this dataset. In this study, we used the transformer-

based SENvT-u4 model [6].

5.1 SENvT-u4 model

The SENvT-u4 model is a transformer-based, self-

supervised learning model. LLMs are often used in vision

domain and natural language processing. In [6], they built

a LLM for sensor data.

In the SENvT-u4 architecture, two learning stages take

place: a first stage of self-supervised learning and a second

stage of finetuning for downstream tasks.

In the first stage, the model was trained by using multi-

ple types of pretext tasks as the purpose of self-supervised

learning. The sliding windows were divided into multiple

equal-sized patches, and a random pretext was used for each
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patch. The pretext tasks include masked token, permuta-

tion, time warp, and rotation tasks. Since self-supervised

learning was used, the dataset used in this stage does not

need to contain labels.

In the second stage, the pretrained model obtained in the

first stage was trained for downstream tasks by finetuning

or transfer learning. Labels are needed for the dataset used

in this stage.

5.2 Experimental methods

To examine the effect of the datasets acquired in this

study, we compared models that were pretrained and then

finetuned on the downstream datasets with those that were

trained only on the datasets for downstream without pre-

training.

In pretraining, we used our smartphone inertial dataset.

The batch size was set to 256 and the learning rate was

set to 1−5. We sed AdamW as the optimizer. The max-

imum number of epochs was 100. A small amount of the

dataset acquired in this study was used for validation, and

the pretrained model with the smallest value of loss for the

validation data was used for the downstream tasks.

After pretraining, we performed finetuning and transfer

learning on the pretrained models. For finetuning, the batch

size was set to 64, the learning rate was set to 1.25−5, and

AdamW was used as the optimizer. For transfer learning,

the learning rate was set to 2.5−5. Cross-entropy loss was

used as the loss function. To address imbalances among

classes in the downstream datasets, the model counted the

number of instances of each class in the training dataset for

the downstream task and weighted the classes. The down-

stream datasets and the number of classes and windows for

each dataset are as shown in Table 3. The data used for

training were 60% of the whole dataset. The rest was used

for validation and testing, 20% each. Training for the down-

stream task was performed five times for one pre-trained

model. For the resulting five models, performance was mea-

sured using the test data to calculate the accuracy and F1-

score.

Table 3: The datasets used for the downstream tasks.
Dataset Classes Sliding windows

ADL [1] 5 1270
Opportunity [5] 4 8534
PAMAP2 [7] 8 5738

REALWORLD [8] 8 55992
WISDM [9] 18 24892

5.3 Results

In self-supervised learning, we consider training data for

the pre-trained model and downstream task data in both

In-Domain and Out-Of-Domain (OOD) scenarios.

• In-Domain Case: This refers to when both the

pre-training data and downstream task data use

CAPTURE-24 dataset.

• Out-Of-Domain (OOD) Case: In this case, the pre-

training data uses CAPTURE-24, while the down-

stream task data uses datasets like ADL, Opportunity,

PAMAP2, Realworld, and WISDM dataset.

Table 4 shows the results of in-domain finetuning of

the SENvT-u4 model pretrained with the CAPTURE-24

dataset.

Table 5 shows the results of out-of-domain finetuning of

the pretrained and non-pretrained models. It also shows the

results for each stride. In every dataset, the finetuned mod-

els outperformed the non-pretrained models. Opportunity,

REALWORLD, and WISDM showed the best performance

at a stride of 2.5s. For ADL, the F1 score was highest at

a stride of 10s, with 2.5s being the second best performing

stride. PAMAP2 showed the best performance at a stride

of 5s.

Table 6 shows the results when out-of-domain transfer

learning was used instead of finetuning. The scores them-

selves are inferior to those with finetuning, but the inferi-

ority of transfer learning over finetuning was also reported

in [6]. In transfer learning, the performance improvement

due to reduced stride was more significant than with fine-

tuning. In all datasets, performance was highest at a stride

of 2.5s. In particular, the REALWORLD dataset showed a

large increase in f1 score, increasing by 0.1817 points. This

also indicates that pretraining with our dataset resulted in

improved performance.

These results indicate that pretraining with our dataset

contributed to the performance improvement of the models.

The smaller the stride of the sliding windows of the dataset,

the higher the performance tended to be on downstream

tasks, and this was especially true for transition learning.

This means that small strides increased the diversity of the

dataset, which resulted in higher performance in the down-

stream tasks.

Table 4: Results of In-Domain finetuning by the SENvT-u4

model on the CAPTURE-24 dataset. The model was pre-

trained with the CAPTURE-24 dataset as well. The results

was not good at first sight but we understood this since we

have unfortunately chosen the difficult test dataset.
Accuracy Recall Precision F1

0.668 0.489 0.443 0.428

6. Labeling

The dataset built in this study has no labels. Therefore,

we attempted to label this dataset using another dataset.

6.1 Methods

Our dataset include five behaviors: walking, standing,

running, cycling, and driving. A very similar dataset is

the SHL dataset from the Sussex-Huawei Locomotion Chal-

lenge 2023. This dataset has eight labels: still, walking,

run, bike, car, bus, train, and subway. The SHL dataset

contains a smartphone acceleration sensor data recorded at

© 1992 Information Processing Society of Japan 5



IPSJ SIG Technical Report

Table 5: Results of Out-of-Domain (OOD) finetuning by

the SENvT-u4 model on the downstream datasets, and also

comparison between the pretrained models and the plain

ones. It also shows the stride of the dataset used for pre-

training. The highest scores are indicated as bold letters.

In all datasets, pretraining with our dataset improved the

performance.
Dataset acc f1

Pretrained (stride 2.5s)
ADL 0.8772 ± 0.0107 0.8478 ± 0.0180

Opportunity 0.7611 ± 0.0163 0.7671 ± 0.0241
PAMAP2 0.8679 ± 0.0067 0.8618 ± 0.0070

REALWORLD 0.9078 ± 0.0023 0.9175 ± 0.0024
WISDM 0.9001 ± 0.0027 0.8994 ± 0.0028

Pretrained (stride 5s)
ADL 0.8929 ± 0.0107 0.8445 ± 0.0168

Opportunity 0.7400 ± 0.0113 0.7341 ± 0.0096
PAMAP2 0.8815 ± 0.0043 0.8786 ± 0.0047

REALWORLD 0.8926 ± 0.0031 0.9041 ± 0.0029
WISDM 0.8816 ± 0.0062 0.8806 ± 0.0063

Pretrained (stride 10s)
ADL 0.8882 ± 0.0153 0.8539 ± 0.0147

Opportunity 0.7375 ± 0.0290 0.7322 ± 0.0305
PAMAP2 0.8760 ± 0.0058 0.8728 ± 0.0060

REALWORLD 0.8892 ± 0.0037 0.9006 ± 0.0037
WISDM 0.8821 ± 0.0032 0.8809 ± 0.0030

Non-pretrained
ADL 0.8630 ± 0.0242 0.8304 ± 0.0182

Opportunity 0.7424 ± 0.0156 0.7289 ± 0.0111
PAMAP2 0.8697 ± 0.0099 0.8654 ± 0.0108

REALWORLD 0.8866 ± 0.0041 0.8985 ± 0.0030
WISDM 0.8678 ± 0.0057 0.8657 ± 0.0059

Table 6: Comparison of the models built with OOD trans-

fer learning. The highest scores are indicated as bold let-

ters. Unlike the results of the finetuned models, the smallest

stride 2.5s performed the best in every dataset.
Dataset acc f1

stride 2.5s
ADL 0.7874 ± 0.0423 0.6795 ± 0.0145

Opportunity 0.6581 ± 0.0119 0.6311 ± 0.0049
PAMAP2 0.6028 ± 0.0102 0.5739 ± 0.0111

REALWORLD 0.6708 ± 0.0020 0.6873 ± 0.0022
WISDM 0.6110 ± 0.0031 0.5948 ± 0.0043

stride 5s
ADL 0.7622 ± 0.0182 0.6427 ± 0.0083

Opportunity 0.6248 ± 0.0056 0.5827 ± 0.0066
PAMAP2 0.5523 ± 0.0031 0.5134 ± 0.0037

REALWORLD 0.5912 ± 0.0043 0.5808 ± 0.0028
WISDM 0.5508 ± 0.0027 0.5347 ± 0.0033

stride 10s
ADL 0.7748 ± 0.0107 0.6082 ± 0.0054

Opportunity 0.5958 ± 0.0114 0.5743 ± 0.0078
PAMAP2 0.5477 ± 0.0030 0.4915 ± 0.0039

REALWORLD 0.5545 ± 0.0082 0.5056 ± 0.0053
WISDM 0.4728 ± 0.0021 0.4519 ± 0.0023

the subjects’ eight different positions: body, hand, hip, and

baggage. In this study, we only used the hand and body

dataset in the experiment. This is because the participants

who collected data in this study held their smartphones in

their hands or put them in their pants or shirt pockets, so

the data collection position was close to their hands or body.

For labeling, we used the SENvT-u4 model again. Firstly,

we pretrained the SENvT-u4 model with our dataset whose

stride is 2.5s, and then we finetuned it for the SHL dataset.

For comparison, we also used the SENvT-u4 model pre-

trained with the CAPTURE-24 dataset [2]. The batch size

was set to 128 and the learning rate was set to 2.5−5. Fine-

tuning was performed 5 times, and the model with the high-

est f1 score for the validation dataset was used. The results

of the finetuning were as shown in Table 7. The CAPTURE-

24 dataset is larger than our dataset and thus performed

better. Comparing the SHL hand and body datasets, the

body dataset performed better.

We used these finetuned models to infer activity labels for

each sliding window in our dataset.

Table 7: The scores of the finetuned models calculated with

the SHL dataset. We only used the training data of the SHL

dataset. We divided that data into the training, validation,

and test datasets again. The models showed in this table

were finetuned with this training dataset and the f1-scores

were calculated with the test dataset.
Pretrained with Finetuned with f1

Our dataset SHL Hand 0.6871 ± 0.0028
CAPTURE-24 SHL Hand 0.7394 ± 0.0039
CAPTURE-24 SHL Body 0.8160 ± 0.0023

6.2 Results

Our dataset includes five behaviors: walking, standing,

running, cycling, and driving. Of the total sliding windows,

walking is the activity that accounts for the largest propor-

tion of all sliding windows, accounting for more than half of

the whole dataset. It is followed by standing and cycling ac-

tivities, which are included in equal proportions. The activ-

ities with the smallest percentages are running and driving,

which have similar percentages each other.

Table 8 shows the number of each label inferred by the

finetuned models. It also shows the percentage of each of

the five labels in the SHL dataset that are closest to the

behaviors in our dataset.

The results of the model pretrained with our dataset and

finetuned with the SHL hand dataset is at the top of Table 8.

This model had the worst f1 score when its performance was

measured with the SHL hand dataset. Instances inferred as

running are 67.6% from the whole dataset, which is incor-

rect. On the other hand, instances inferred as walking are

9.42%, which is too few because the participant walked more

than half of the time.

The results of the model pretrained with CAPTURE-24

and finetuned with the SHL hand dataset is at the middle

of the table. This model showed the second best f1-score

when its performance was measured with the SHL dataset.

With this model, the number of instances inferred as the

bus, train, and subway labels was very small. These activ-

ities are not included in our dataset. However, the number

of instances inferred as walking was still too few and its ra-

tio was 7.43%. The number of instances inferred as running

was the largest ans the ratio was 65.0%.

The results of the model pretrained with CAPTURE-24

and finetuned with the SHL hand dataset is at the bottom of
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the table. This model showed the best f1-score when its per-

formance was measured with the SHL body dataset. With

this model, the number of instances inferred as walking was

the largest and the ratio was 28.3%. Also, the number of

instances inferred as running was the smallest compared to

the other models and the ratio was 38.3%. Although the

number of instances inferred as running was still the high-

est, but it was the closer to the actual number of instances

of running than the other models.

Also table 9 shows the number of each label inferred by

the finetuned models, but adjacent sliding windows inferred

to have the same label are concatenated and counted as one.

The results above demonstrate that the nature of the ac-

celeration data measured differs depending on the placement

of the smartphone. While the SHL dataset has fixed posi-

tions for the smartphone, such as on the hand or body, in

our approach, the smartphone’s position changes over time.

As a result, we believe that the fine-tuning method using the

SHL dataset failed to properly label the data.

Table 8: The number of instances of each label predicted by

the finetuned SENvT-u4 models. It shows each result of the

datasets used.
Activity Windows Ratio Ratio (5 classes)

Our dataset + SHL Hand
Still 528 2.67 % 2.89 %

Walking 1723 8.72 % 9.42 %
Run 12357 62.5 % 67.6 %
Bike 2314 11.7 % 12.7 %
Car 1364 6.90 % 7.46 %
Bus 503 2.54 % -
Train 373 1.89 % -

Subway 607 3.07 % -
CAPTURE-24 + SHL Hand

Still 915 4.63 % 4.63 %
Walking 1468 7.43 % 7.43 %
Run 12853 65.0 % 65.0 %
Bike 4476 22.6 % 22.6 %
Car 51 0.258 % 0.258 %
Bus 1 0.00506 % -
Train 2 0.01011 % -

Subway 3 0.0152 % -
CAPTURE-24 + SHL Body

Still 1122 5.68 % 5.93 %
Walking 5363 27.1 % 28.3 %
Run 7253 36.7 % 38.3 %
Bike 4957 25.1 % 26.1 %
Car 265 1.34 % 1.40 %
Bus 149 0.754 % -
Train 592 2.99 % -

Subway 68 0.344 % -

7. Conclusions

In this study, we constructed an unlabeled accelerometer

dataset using inertial sensors in ordinary smartphones.

We collected the data unlabeled in order to use it for self-

supervised learning. Thus, the cost of collecting labels was

low, but the time required to collect the data was the same,

albeit without labels. Note that the time to assign labels

when labels were available is compared to the time required

for, for example, typing the current activity label with a

smartphone, which is assumed to be almost negligible in

Table 9: The number of instances of each label predicted

by the finetuned SENvT-u4 models. But, adjacent sliding

windows inferred to have the same label are concatenated

and counted as one.
Activity Sections Ratio Ratio (5 classes)

Our dataset + SHL Hand
Still 300 5.02% 6.89%

Walking 1023 17.1% 23.5%
Run 2245 37.6% 51.6%
Bike 586 9.81% 13.5%
Car 197 3.30% 4.53%
Bus 763 12.8% -
Train 474 7.93% -

Subway 386 6.46% -
CAPTURE-24 + SHL Hand

Still 254 4.20 % 4.20 %
Walking 1029 17.0 % 17.0 %
Run 2761 45.7 % 45.7 %
Bike 1950 32.2 % 32.3 %
Car 48 0.794 % 0.794 %
Bus 1 0.0165 % -
Train 2 0.0331 % -

Subway 3 0.0496 % -
CAPTURE-24 + SHL Body

Still 367 4.82 % 5.21 %
Walking 1714 22.5 % 24.3 %
Run 2826 37.1 % 40.1 %
Bike 1904 25.0 % 27.0 %
Car 229 3.00 % 3.25 %
Bus 139 1.82 % -
Train 379 4.97 % -

Subway 64 0.840 % -

terms of time. On the other hand, because the data were

unlabeled, there was no need to learn the complicated pro-

cess of how to apply the labels, and there was no need to

input the labels with a smartphone and in this sense, the

data could be collected with zero prior knowledge of human

activity recognition. Our dataset consists of the data from

three participants, and the total length of the data was 228

hours.

Furthermore, because this data was to be used in self-

supervised learning, there was no need to collect labels un-

like other datasets. It was limited to roughly tracing by

memory what activities the participants performed. On the

other hand, for this purpose, it is not necessary to seek an

overview of the behavior of this data. However, we thought

that if we trained a model with self-supervised learning, we

would be able to obtain approximate labels. This consider-

ation was analyzed in the latter part of this study.

We pretrained the SENvT-u4 model on this dataset and

finetuned it on various other datasets, and observed perfor-

mance improvements on all datasets. In addition, reducing

the stride of the sliding windows of our dataset increased

the diversity of the dataset and improved the performance

of the model. In our attempts to label unlabeled datasets,

we found that where on the user’s body the sensor data was

collected had a significant impact on the accuracy of activity

recognition.
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